Inline Math Mode#
You can include math directly in your text with single dollar signs ($). This is useful for short math within a sentence. For example:
This is an inline equation $a^2+b^2=c^2$ in a sentence.
This is an inline equation a2+b2=c2 in a sentence.
Display Math Mode#
For longer or more complex math, use double dollar signs ($$). This puts the math on a new line with extra space around it. For example:
$$
a^2+b^2=c^2
$$
a2+b2=c2$$
\begin{equation*}
\pi
=3+\frac{1^{2}}{6+\frac{3^{2}}{6+\frac{5^{2}}{6+\frac{7^{2}}{6+\frac{9^{2}}{6+\frac{11^{2}}{\ddots}}}}}}
\end{equation*}
$$
π=3+6+6+6+6+6+⋱1129272523212$$
\begin{equation*}
\begin{split}
f(x)
&=\sum^{\infty}_{n=0} \frac{f^{(n)}(a)}{n!} (x-a)^{n}\\
&=f(a) + f^{'}(a)(x-a) + \frac{f^{''}(a)}{2!}(x-a)^{2}\\
&\quad + \frac{f^{'''}(a)}{3!}(x-a)^{3} + \frac{f^{''''}(a)}{4!}(x-a)^{4} + \cdots
\end{split}
\end{equation*}
$$
f(x)=n=0∑∞n!f(n)(a)(x−a)n=f(a)+f′(a)(x−a)+2!f′′(a)(x−a)2+3!f′′′(a)(x−a)3+4!f′′′′(a)(x−a)4+⋯$$
\begin{equation*}
e=2.
7182818284\;5904523536\;0287471352\;6624977572\;4709369995\;9574966967
6277240766\;3035354759\;4571382178\;5251664274\;2746639193\;2003059921\;\ldots
\end{equation*}
$$
e=2.718281828459045235360287471352662497757247093699959574966967627724076630353547594571382178525166427427466391932003059921…$$
\begin{align*}
AB
&=
\begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n}\\
a_{21} & a_{22} & \cdots & a_{2n}\\
\vdots & \vdots & \ddots & \vdots\\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{pmatrix}
\begin{pmatrix}
b_{11} & b_{12} & \cdots & b_{1p}\\
b_{21} & b_{22} & \cdots & b_{2p}\\
\vdots & \vdots & \ddots & \vdots\\
b_{n1} & b_{n2} & \cdots & b_{np}
\end{pmatrix}\\
&=
\begin{pmatrix}
a_{11} b_{11} + a_{12} b_{21} + \cdots + a_{1n} b_{n1} &
a_{11} b_{12} + a_{12} b_{22} + \cdots + a_{1n} b_{n2} &
\cdots &
a_{11} b_{1p} + a_{12} b_{2p} + \cdots + a_{1n} b_{np}\\
a_{21} b_{11} + a_{22} b_{21} + \cdots + a_{2n} b_{n1} &
a_{21} b_{12} + a_{22} b_{22} + \cdots + a_{2n} b_{n2} &
\cdots &
a_{21} b_{1p} + a_{22} b_{2p} + \cdots + a_{2n} b_{np}\\
\vdots & \vdots & \ddots & \vdots\\
a_{m1} b_{11} + a_{m2} b_{21} + \cdots + a_{mn} b_{n1} &
a_{m1} b_{12} + a_{m2} b_{22} + \cdots + a_{mn} b_{n2} &
\cdots &
a_{m1} b_{1p} + a_{m2} b_{2p} + \cdots + a_{mn} b_{np}
\end{pmatrix}\\
&=
\begin{pmatrix}
\sum^{n}_{k=1} a_{1k} b_{k1} & \sum^{n}_{k=1} a_{1k} b_{k2} & \cdots & \sum^{n}_{k=1} a_{1k} b_{kp}\\
\sum^{n}_{k=1} a_{2k} b_{k1} & \sum^{n}_{k=1} a_{2k} b_{k2} & \cdots & \sum^{n}_{k=1} a_{2k} b_{kp}\\
\vdots & \vdots & \ddots & \vdots\\
\sum^{n}_{k=1} a_{mk} b_{k1} & \sum^{n}_{k=1} a_{mk} b_{k2} & \cdots & \sum^{n}_{k=1} a_{mk} b_{kp}
\end{pmatrix}\\
&=
\begin{pmatrix}
c_{11} & c_{12} & \cdots & c_{1p}\\
c_{21} & c_{22} & \cdots & c_{2p}\\
\vdots & \vdots & \ddots & \vdots\\
c_{m1} & c_{m2} & \cdots & c_{mp}
\end{pmatrix}
=C
\end{align*}
$$
AB=a11a21⋮am1a12a22⋮am2⋯⋯⋱⋯a1na2n⋮amnb11b21⋮bn1b12b22⋮bn2⋯⋯⋱⋯b1pb2p⋮bnp=a11b11+a12b21+⋯+a1nbn1a21b11+a22b21+⋯+a2nbn1⋮am1b11+am2b21+⋯+amnbn1a11b12+a12b22+⋯+a1nbn2a21b12+a22b22+⋯+a2nbn2⋮am1b12+am2b22+⋯+amnbn2⋯⋯⋱⋯a11b1p+a12b2p+⋯+a1nbnpa21b1p+a22b2p+⋯+a2nbnp⋮am1b1p+am2b2p+⋯+amnbnp=∑k=1na1kbk1∑k=1na2kbk1⋮∑k=1namkbk1∑k=1na1kbk2∑k=1na2kbk2⋮∑k=1namkbk2⋯⋯⋱⋯∑k=1na1kbkp∑k=1na2kbkp⋮∑k=1namkbkp=c11c21⋮cm1c12c22⋮cm2⋯⋯⋱⋯c1pc2p⋮cmp=Ceix=1+ix+2!(ix)2+3!(ix)3+4!(ix)4+5!(ix)5+6!(ix)6+7!(ix)7+8!(ix)8+⋯=1+ix−2!x2−3!ix3+4!x4+5!ix5−6!x6−7!ix7+8!x8+⋯=(1−2!x2+4!x4−6!x6+8!x8−⋯)+i(x−3!x3+5!x5−7!x7+⋯)=cosx+isinx